Тимошевський Б. Г.Митрофанов, О. С.Mytrofanov, Oleksandr S.2021-09-132021-09-132021https://eir.nuos.edu.ua/handle/123456789/4358Митрофанов, О. С. Ефективність роторно-поршневих двигунів із шарнірно-кулачковим механізмом перетворення руху : дис. д-ра техн. наук : 05.05.03 / О. С. Митрофанов ; наук. консультант Б. Г. Тимошевський ; НУК. – Миколаїв, 2021. – 411 с.Митрофанов О. С. Ефективність роторно-поршневих двигунів із шарнірно-кулачковим механізмом перетворення руху. – Кваліфікаційна наукова праця на правах рукопису. Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.05.03 – двигуни та енергетичні установки (Технічні науки). – Національний університет кораблебудування імені адмірала Макарова, Міністерство освіти і науки України, Миколаїв, 2021. Науково-прикладною проблемою, яка вирішується у дисертаційній роботі, є підвищення ефективності застосування енергетичного потенціалу стиснутого робочого тіла шляхом раціональної організації робочого процесу перетворення потенційної енергії в механічну роботу, а саме забезпечення збільшення повноти розширення, зменшення зворотного стиснення та газодинамічних втрат робочого тіла у машинах об’ємної дії в енергетичних установках на їх базі. Необхідність зниження енергетичних витрат установок, що використовують потенційну енергію стиснутого робочого тіла, визначає запит практики, спрямований на підвищення ефективності перетворення енергії шляхом розробки та впровадження в промисловість нових енергоефективних машин об’ємної дії. Крім того, розробка нових двигунів дозволить задовольнити специфічні експлуатаційні вимоги нових сучасних напрямків застосування, а також забезпечити зниження масогабаритних показників, надійність та працездатність на всіх експлуатаційних режимах незалежно від умов експлуатації. Згідно із запитом практики визначена мета дослідження дисертаційної роботи – підвищення ефективності використання низькопотенційної енергії стиснутого робочого тіла в машинах об’ємної дії при перетворенні у механічну роботу в енергетичних установках. Робочою науковою гіпотезою наукового дослідження є твердження, що підвищення ефективності перетворення низькопотенційної енергії стиснутого робочого тіла в механічну роботу в машинах об’ємної дії досягається поєднанням переваг організації робочого процесу ротаційних та поршневих двигунів (регулювання початку і тривалості процесу наповнення, збільшення повноти розширення робочого тіла, зниження мертвого об’єму та газодинамічних втрат при газообміні) шляхом нових конструктивних рішень (поєднання зворотно-поступального руху поршня при одночасному його обертанні разом з ротором). Для підвищення ефективності процесу перетворення низькопотенційної енергії стиснутого робочого тіла при розширенні в машинах об’ємної дії пропонується використати ідею поєднання конструкцій руху ведучої ланки ротаційних (обертовий рух) та поршневих (зворотнопоступовий рух) двигунів, що забезпечить урахування переваг й особливостей організації робочих процесів двох різних типів двигунів. Об’єктом дослідження є процеси перетворення енергії в роторно-поршневих двигунах об’ємної дії. Предметом дослідження є параметри, характеристики та закономірності процесів перетворення енергії, які відбуваються у роторно-поршневих двигунах об’ємної дії. Задачі наукового дослідження 1. Аналіз процесів, технічного рівня, умов експлуатації, переваг і недоліків застосування, особливостей конструкції машин об’ємної та динамічної дії, що випускаються серійно, а також можливих перспективних видів з метою виявлення резервів і напрямків підвищення їх ефективності. 2. Створення фізичної моделі підсистеми ЕУ з використання стиснутого робочого тіла та її елементів на базі дослідного зразка роторно-поршневого двигуна із шарнірно-кулачковим механізмом руху, а також розробка програми проведення експериментальних досліджень процесів у них і параметрів роботи. 3. Визначення експериментальним шляхом закономірностей зміни енергетичних та економічних показників роботи роторно-поршневого двигуна із шарнірно-кулачковим механізмом руху, а також дослідження впливу на них експлуатаційних параметрів двигуна (обертів і робочого тиску) й регулювання тривалості процесу наповнення. 4. Удосконалення математичної моделі робочого циклу машин об’ємної дії, що передбачає врахування впливу особливостей поєднання переваг організації робочого процесу ротаційних і поршневих двигунів через конструкцію механізму руху та газообміну. 5. Виявлення закономірностей взаємного впливу конструктивних (діаметр робочого циліндра, хід поршня, відносний мертвий об’єм), експлуатаційних (оберти й робочий тиск) і регулюючого (ступеня наповнення робочого циліндра) параметрів на індикаторні показники роботи при перетворенні низькопотенційної енергії стиснутого робочого тіла в роторно-поршневих двигунах об’ємної дії із шарнірно-кулачковим механізмом руху. 6. Синтез нових науково обґрунтованих схемних рішень енергетичних установок різного призначення на базі роторно-поршневих двигунів із шарнірно-кулачковим механізмом руху та дослідження показників ефективності перетворення низькопотенційної енергії стиснутого робочого тіла в двигунах залежно від умов їх експлуатації. 7. Розробка загальних основ конструювання й проектування роторно-поршневих двигунів із шарнірно-кулачковим механізмом руху, а також відповідних рекомендацій щодо стендових та контрольних випробувань і тривалості проведення обкатки. 8. Апробація та впровадження результатів наукового дослідження ефективності роторно-поршневих двигунів із шарнірно-кулачковим механізмом руху енергетичних установок з машинами об’ємної дії. У вступі подана загальна характеристика дисертації, а саме обґрунтована актуальність наукового дослідження, сформульовані мета й головні задачі, визначені об’єкт та предмет. Викладені наукова новизна й практична цінність одержаних результатів дослідження, а також зазначений особистий внесок здобувача, наведені дані щодо апробації результатів роботи та публікацій за темою наукового дослідження. У першому розділі проаналізовано конструкцію, принцип роботи та сфери використання різних типів серійних двигунів об’ємної та динамічної дій, що дозволило виділити ряд експлуатаційних переваг і недоліків їх застосування у різних сферах промисловості. Проведено аналіз можливих альтернативних машин об’ємної дії та конструктивних ідейних рішень у них. Виділено основні переваги й недоліки цих рішень, пов’язаних з експлуатацією і технологією виготовлення. Виявлено значний вплив конструктивного виконання та організації робочого процесу в двигунах на ефективність перетворення потенційної енергії стиснутого робочого тіла. Визначено перспективність розробки нових енергоефективних машин об’ємної дії для комплексного вирішення науково-прикладної проблеми ефективності використання енергетичних ресурсів, що є актуальною та пріоритетною проблемою в енергетиці. У другому розділі розроблена загальна методологія проведення дисертаційної роботи, яка відображена у вигляді технологічної карти наукового дослідження. На основі запиту практики визначені мета дисертації та її робоча гіпотеза, а також виділені задачі дисертаційної роботи. Розглянуті основні методи й загальна методика дослідження дослідного зразка роторно-поршневого двигуна об’ємної дії із шарнірно-кулачковим механізмом руху, що відповідають задачам дисертації та є загальноприйнятими й дозволили отримати достовірні та достатньо точні результати. Засобами досягнення поставленої мети наукового дослідження є теоретичні та експериментальні методи дослідження. Відповідно до цілей роботи сформульовано задачі експериментального дослідження й обрано методи проведення цього дослідження, що дозволили перевірити адекватність математичної моделі робочого циклу роторно-поршневого двигуна, а також експериментально встановити вплив основних параметрів, режимів роботи та інших факторів на ефективність перетворення енергії стиснутого робочого тіла. З теоретичних методів дослідження в роботі широко застосовувався метод математичного моделювання. Сформульовано основні вимоги до математичної моделі робочого циклу роторно-поршневого двигуна об’ємної дії із шарнірно-кулачковим механізмом руху. У третьому розділі наведені опис конструкції дослідного зразка роторно-поршневого двигуна об’ємної дії із шарнірно-кулачковим механізмом руху 12РПД 4,4/1,75, методика проведення його науково-дослідних випробувань, відомості про експериментальний стенд, система вимірювання та реєстрації отриманих результатів. Крім того, у розділі подані основні результати експериментальних досліджень роторно-поршневого двигуна об’ємної дії із шарнірно-кулачковим механізмом руху та їх аналіз: дослідження параметрів робочого циклу; режимів роботи й особливостей експлуатації та обслуговування; визначення впливу параметрів робочого циклу на енергетичні й економічні показники двигуна. У четвертому розділі обґрунтовані вимоги та розроблена математична модель робочого циклу роторно-поршневого двигуна об’ємної дії із шарнірнокулачковим механізмом руху, яка враховує особливості кінематики двигуна, а також, базуючись на отриманих експериментальних даних, виконана оцінка адекватності моделі. Виконані дослідження впливу конструктивних параметрів роторно-поршневих двигунів об’ємної дії із шарнірно-кулачковим механізмом руху на ефективність перетворення потенційної енергії стиснутого робочого тіла у робочому циліндрі. У п’ятому розділі виконані аналіз та узагальнення результатів дослідження ефективності використання роторно-поршневих двигунів об’ємної дії із шарнірно-кулачковим механізмом руху в існуючих і перспективних енергетичних установках різного призначення. Наведено порівняння параметрів двигунів різних типів з роторно-поршневими, а також доведено ефективність та перспективність застосування нових двигунів у порівнянні із серійними машинами об’ємної дії. Досліджено можливість використання роторно-поршневих двигунів у транспортних енергетичних установках, газотранспортних і газорозподільних системах, енергетичних установках акумулювання надлишкової електричної енергії, виробленої з відновлювальних джерел енергії, в енергетичних установках отримання та безпечного акумулювання водню із сірководню Чорного моря, а також енергетичних установках з ДВЗ як утилізатора енергії відпрацьованих газів. У шостому розділі подані результати реалізації наукового дослідження в практику проектування та створення роторно-поршневих двигунів об’ємної дії із шарнірно-кулачковим механізмом руху. Наведено загальні основи конструювання та компонування елементів роторно-поршневих двигунів різного призначення, розглянуто питання щодо загального компонування двигуна й схеми підведення повітря, конструювання основних вузлів та деталей, вибору схеми механізму руху, а також особливостей ущільнення. Подано практичні рекомендації щодо технології виготовлення та збирання основних складальних вузлів і деталей. Наведена реалізація результатів наукового дослідження роторно-поршневих двигунів об’ємної дії із шарнірнокулачковим механізмом руху на об’єктах промисловості. Наукова новизна отриманих результатів полягає у тому, що для підвищення ефективності застосування низькопотенційної енергії стиснутого робочого тіла в машинах об’ємної дії при перетворенні у механічну роботу в енергетичних установках: 1) уперше експериментально й теоретично доведено, що збільшення повноти розширення та зменшення зворотного стиснення і газодинамічних втрат низькопотенційного робочого тіла досягаються використанням у роторно-поршневих двигунах об’ємної дії для перетворення поступального руху поршня в обертальний рух ротора шарнірно-кулачкового механізму, а також регулюванням тривалості процесу наповнення, що, відповідно, дозволяє зменшити питому масу на 17…50 %, збільшити відношення пускового крутного моменту до номінального до 11 %, а також зменшити питому витрату робочого тіла (енергії) на 15…24 % у порівнянні із серійними поршневими машинами об’ємної дії із золотниковим газорозподілом, які застосовують як механізм руху кривошипно-шатунний механізм; 2) уперше визначено та експериментально підтверджено, що більш ефективним підходом до регулювання навантаження роторно-поршневих двигунів із шарнірно-кулачковим механізмом руху є регулювання тривалості процесу наповнення (за рахунок зміни фаз газообміну), збільшення якого у 1,43…2,45 рази забезпечує підвищення ефективної потужності у 1,10…1,91 рази, а раціональне співвідношення заданої потужності двигуна, його робочого тиску та ступеня наповнення (у межах 0,2…0,4) дає змогу покращити процес перетворення низькопотенційної енергії стиснутого робочого тіла в механічну роботу й забезпечити зниження питомої ефективної витрати робочого тіла до 10,1 %; 3) уперше експериментально визначено вплив тривалості процесу наповнення робочого циліндра на значення тиску відпрацьованого повітря у випускному колекторі роторно-поршневого двигуна із шарнірно-кулачковим механізмом руху та встановлено, що зменшення ступеня наповнення у 1,43…2,45 рази знижує тиск відпрацьованого повітря у 1,16…2,16 рази, тим самим зменшуючи газодинамічні втрати на випуску; 4) уперше експериментально визначено, що організація процесу газообміну (зміна початку та кінця процесів впуску і випуску) за рахунок використання шарнірно-кулачкового механізму руху в умовах робочого тиску 0,4…0,8 МПа забезпечує діапазон зміни тиску відпрацьованого повітря у випускному колекторі роторно-поршневого двигуна на рівні 0,010…0,075 МПа, що не перевищує та є значно нижчим від допустимих значень (0,105…0,120 МПа) для машин об’ємної дії; 5) уперше експериментально визначено діапазон максимального падіння температури повітря від початкового значення зберігання до кінцевого на випуску з роторно-поршневого двигуна із шарнірно-кулачковим механізмом руху для робочого тиску 0,4…0,8 МПа, який складає 35…43 К, а також установлено вплив обертів двигуна на зниження температури повітря при дроселюванні та розширенні у робочому циліндрі (збільшення обертів у 2,35 разів збільшує падіння температури при дроселюванні в 1,23 рази, при цьому зміна температури при розширенні, залежно від обертів, не перевищує 4,5 %), що дало змогу оцінити ефективність і працездатність двигуна за умов від’ємних температур зберігання робочого тіла (–5…–20 оС); 6) уперше для роторно-поршневих двигунів об’ємної дії із шарнірно-кулачковим механізмом руху методом фізичного й математичного моделювання для різних експлуатаційних параметрів (оберти і робочий тиск) установлено вплив конструктивних параметрів, таких, як діаметр робочого циліндра, хід поршня, відносний мертвий об’єм (зменшення відношення ходу поршня до діаметра робочого циліндра у 1,5 рази знижує питому індикаторну витрату робочого тіла до 60,8 % при одночасному незначному зниженні потужності двигуна до 8,0 %, а зменшення відносного мертвого об’єму в 1,25 рази знижує питому індикаторну витрату робочого тіла до 27,7 % та збільшує потужність двигуна до 28,2 %) на зміну показників їх роботи при перетворенні потенційної енергії стиснутого робочого тіла в механічну роботу. Набуло подальшого розвитку теоретичні основи конструювання й проектування роторно-поршневих двигунів об’ємної дії із шарнірно-кулачковим механізмом руху за рахунок розробки загального компонування двигуна, схеми підведення робочого тіла та конструкції основних вузлів і деталей, а також вибору способу ущільнення та конструктивного виконання механізму руху, що спрямовано на спрощення виготовлення, збирання, а також поліпшення експлуатації й обслуговування. Удосконалено: метод визначення необхідної кількості теплоти для підігріву стиснутого робочого тіла на вході у впускний ресивер роторно-поршневого двигуна за рахунок отриманої експериментальної залежності зміни падіння температури відпрацьованого повітря від обертів і тиску у впускному ресивері за умов забезпечення допустимого значення температури відпрацьованого робочого тіла на виході (встановлена мінімально допустима температура зберігання робочого тіла, за якої ще можлива робота двигуна без підігріву та яка складає 0…–5 оС); кінематику механізму руху роторно-поршневого двигуна об’ємної дії із шарнірно-кулачковим механізмом руху за рахунок визначення геометричного зв’язку між ходом поршня двигуна, довжиною ланки рухомого чотирикутника та кутом між ланками, що дозволило отримати залежності для визначення переміщення, швидкості й прискорення поршня залежно від кута повороту ротора. Базуючись на отриманих наукових результатах, сформульовано нові наукові положення. 1. Поєднання переваг організації робочого процесу ротаційних і поршневих двигунів шляхом застосування шарнірно-кулачкового механізму руху в роторно-поршневих двигунах об’ємної дії забезпечує регулювання процесу наповнення, збільшення повноти розширення робочого тіла, зменшення зворотного стиснення, а також відсутність мертвого об’єму, що сприяє підвищенню в 1,18…1,32 рази ефективності перетворення низькопотенційної енергії робочого тіла (витрата повітря на 1 кВт потужності) без попереднього його підігріву в порівнянні із серійними поршневими машинами об’ємної дії із золотниковим газорозподілом та кривошипно-шатунним механізмом руху. 2. Шарнірно-кулачковий механізм руху з відношенням ходу поршня до діаметра робочого циліндра менше одного дає змогу здійснювати два робочих цикли за один оберт ротора, регулювати ступінь наповнення, а також рівномірне розміщення циліндрів по всій довжині ротора в роторно-поршневих двигунах об’ємної дії, забезпечує компактність та знижує питому масу двигуна у 1,2…2,0 рази у порівнянні із серійними поршневими машинами об’ємної дії з кривошипно-шатунним механізмом руху. 3. Шарнірно-кулачковий механізм руху й система газорозподілу з можливістю регулювання ступеня наповнення робочого циліндра, що на ньому базується, забезпечують практично відсутність відносного мертвого об’єму (значення εо не перевищує 0,015 та обумовлене лише технологічними зазорами) й збільшують відношення пускового крутного моменту до номінального до 1,11 рази у порівнянні із серійними поршневими машинами об’ємної дії із золотниковим газорозподілом і кривошипно-шатунним механізмом руху. Наукове значення отриманих результатів полягає у розвитку основ та принципів перетворення низькопотенційної енергії стиснутого робочого тіла в механічну роботу за рахунок поєднання особливостей і переваг організації робочого процесу різних типів двигунів, що є теоретичною базою для реалізації концепції підвищення ефективності машин об’ємної дії. Практичне значення отриманих результатів полягає у тому, що розроблено: новий напрям у конструюванні та проектуванні двигунів об’ємної дії, технології виготовлення й збирання основних складальних вузлів та деталей роторно-поршневих двигунів із шарнірно-кулачковим механізмом руху; рекомендації щодо вибору необхідних матеріалів для виготовлення деталей роторно-поршневого двигуна, а також установлення необхідного зазору між сполучними парами з урахуванням робочої температури деталей; метод і програму проведення експериментальних досліджень експлуатаційних режимів та робочих процесів роторно-поршневих двигунів об’ємної дії із шарнірно-кулачковим механізмом руху; програму проведення стендових випробувань роторно-поршневих двигунів при серійному виробництві, а також послідовність і тривалість проведення обкатки та контрольних випробувань; рекомендації щодо розвитку теорії розрахунку робочого циклу машин об’ємної дії, що стосуються врахування особливостей кінематики шарнірно-кулачкового механізму руху; схемні й технічні рішення енергетичних установок на базі роторно-поршневих двигунів об’ємної дії із шарнірно-кулачковим механізмом руху. Упровадження результатів дисертації. Результати дисертаційної роботи пройшли апробацію і були використані на машинобудівному підприємстві «Мотор-Плюс» (м. Миколаїв) при проектуванні та реалізації проектів енергетичних установок з роторно-поршневими двигунами об’ємної дії із шарнірно-кулачковим механізмом руху різного призначення згідно з вимогами замовника; на Машинобудівному підприємстві «МОТОРСЕРВІСПРОМ» (м. Миколаїв) при виконанні проектних робіт і оцінці енергетичних й економічних показників серії пневмодвигунів (12РПД 44/1,75; 20РПД 4,5/1,75; 20РПД 3,0/1,15); на підприємстві «ТЕПЛОМАШПРОГРЕС» (м. Миколаїв) при модернізації пневматичного приводу суднового крана з вантажопідйомністю до 1000 кг; при розробці проектної документації вібраційного живильника для випуску і доставки руди на підприємстві «БІЗНЕС-СЕРВІС-БЮРО» (Миколаївська обл.); на підприємстві «ШИПСЕРВІС» (м. Миколаїв) при розробці проекту та проведенні модернізації платформного електричного візка ЕТ-2054 (електрокар) вантажопідйомністю 2 т на пневматичний привід; у підготовці технічної документації з модернізації виробничого обладнання підприємствами «АВИАФИНСЕРВИС» (м. Миколаїв) і «Енерготехнологія» (Миколаївська обл.); у навчальному процесі кафедри ДВЗ У та ТЕ при підготовці бакалаврів і магістрів Національного університету кораблебудування ім. адм. Макарова в курсах лекцій, при проведенні практичних, індивідуальних та лабораторних занять з дисциплін «Двигуни нетрадиційних схем», «Суднові допоміжні механізми», а також при виконанні розрахункових завдань, у курсовому й дипломному проектуванні.ukроторно-поршневий двигун об’ємної діїшарнірно-кулачковий механізм рухумеханізм газорозподілустиснуте робоче тілоробочий процес05.05.03 "Двигуни та енергетичні установки"rotary-piston volumetric enginehinge-cam motion mechanismgas distribution mechanismcompressed working fluidworking processЕфективність роторно-поршневих двигунів із шарнірно-кулачковим механізмом перетворення рухуOther