Кафедра двигунів внутрішнього згоряння, установок та технічної експлуатації (ДВЗ,УтаТЕ)
Постійне посилання на фонд
Переглянути
Перегляд Кафедра двигунів внутрішнього згоряння, установок та технічної експлуатації (ДВЗ,УтаТЕ) за Назва
Зараз показуємо 1 - 20 з 206
Результатів на сторінці
Налаштування сортування
Документ Acoustic Method for Estimation of Marine Low-Speed Engine Turbocharger Parameters(2021) Varbanets Roman; Fomin Oleksij; Píštˇek Václav; Klymenko Valentyn; Minchev Dmytro; Khrulev Alexander; Zalozh Vitalii; Kuˇcera PavelДокумент An Experimental Study of the Vibrational Characteristics of a Diamond Circular Blade Using Electronic Speckle-Pattern Interferometry and FEM(2021) Tkach Mykhaylo; Halynkin Yurii; Proskurin, Arkadii; Zhuk Irina; Kluchnyk Volodymyr; Bobylev IgorДокумент Analysis of Compressed Air Energy Conversion Processes in a Rotary Piston Pneumatic Engine(2021) Mytrofanov, O.; Proskurin, A.Документ Analysis of Efficiency of Rotary Piston Engines Use at Power Plants for Surplus Electrical Energy Accumulation(2020) Mytrofanov, O.; Proskurin, A.Документ Analysis of the piston engine operation on ethanol with the synthesis-gas additives(2018) Mytrofanov O.; Proskurin A.; Poznanskyi A.Проведено експериментальні дослідження параметрів поршневого двигуна 1Ч 6,8/5,4 з примусовим запалюванням при роботі на етанолі з різними добавками синтез-газу до 10 %. Використовувалися методи індиціювання робочого циклу і реєстрації теплового балансу двигуна, які дозволяють отримати найбільш повне уявлення про особливості згоряння етанолу з добавками синтез-газу, а також визначити взаємозв’язку і впливу складу величини добавки на основні параметри робочого циклу двигунів. Отримано та оброблено експериментальні індикаторні діаграми на різних режимах при роботі двигуна без та з добавками синтез-газу. Встановлено, що для двигунів з іскровим запалюванням, які працюють на етанолі з добавками синтез-газу до 10 %, спостерігається зниження індикаторної роботи і питомої індикаторної витрати палива. Зниження індикаторної роботи двигуна вирішується шляхом використання малих добавок синтез-газу на великих навантаженнях і максимальних добавках при малих навантаженнях. Визначено, що при значних добавках синтез-газу до етанолу відбувається збільшення максимального тиску згоряння до 12 % і зміщення його в бік верхньої мертвої точки на 7° п.к.в. Збільшення добавки синтез-газу до етанолу більше 10 % потребує коригування коефіцієнта надлишку повітря і кута випередження запалювання. За умови застосування добавок синтез-газу до етанолу питома ефективна витрата етанолу знижується на 2,5...12,4 %. Отримані експериментальні дані, з досить високим рівнем точності, можна вважати коректними для двигунів з іскровим запалюванням і об’ємом циліндра 190...250 см3. Отримані кількісні і якісні результати експериментальних досліджень підтвердили ефективність використання добавок синтез-газу до етанолу, а також дозволять доповнити математичну модель робочого циклу емпіричними коефіцієнтами і залежностями для кожного окремого випадку.Документ Determining a change in the compressed air temperature during the operation of a rotary piston engine(2020) Mytrofanov, O.; Proskurin, A.Документ Determining the effect of anti-friction additive on the power of mechanical losses in a rotary piston engine(2023) Mytrofanov Oleksandr; Proskurin Arkadii; Poznanskyi Andrii; Zivenko OleksiiДокумент Determining the effective indicators of a rotary-piston motor operation(2020) Mytrofanov, O.; Proskurin, A.; Poznanskyi, A. S.Документ Determining the power of mechanical losses in a rotary-piston engine(2022) Mytrofanov Oleksandr; Proskurin, Arkadii; Poznanskyi, Andrii S.; Zivenko, OleksiiДокумент Effect of thermal inertia on diesel engines transient performance(2020) Minchev D. S.; Gogorenko, O. A.; Мінчев Д. С.; Гогоренко, О. А.Теплова інерція деталей циліндро-поршневої групи, колекторів впускної та випускної систем впливає на роботу дизельних двигунів на неусталених режимах. Внаслідок теплової інерції температура деталей двигуна на усталеному режимі роботи коливається у вузькому діапазоні, проте під час перехідного процесу нагрівання або охолодження деталей потребує певного часу. Вплив теплової інерції проявляється в зміні умов протікання процесів вигоряння палива, внутрішньо циліндрового теплообміну та індикаторного ККД циклу, а також у збільшенні загальної інерційності системи газотурбінного наддуву, що зумовлює необхідність врахування вказаного явища при моделюванні неусталених режимів роботи двигунів. Для вирішення вказаної задачі в програмному комплексі Blitz-PRO, який є доступним on-line, та дозволяє здійснювати моделювання робочих процесів двигунів внутрішнього згоряння, реалізована підмодель процесів теплопередачі. Метод полягає у врахуванні теплоємності деталей двигуна, що акумулюють енергію під час нагрівання та віддають енергію при охолодженні під час неусталеної роботи двигуна. У комбінації з рівняннями тепловіддачі та теплопровідності це дозволяє розрахувати зміну середньої температури деталей двигуна в часі та відобразити зміни в загальному процесі теплопередачі. Запропонований метод перевірявся шляхом співставлення експериментальних даних, отриманих на випробувальному динамометричному стенді на базі двигуна КамАЗ-740.10, з результатами моделювання в Bltz-PRO. Під час експерименту фіксувалися миттєві значення крутного моменту двигуна, частоти обертання колінчастого вала та ротора турбокомпресора, тиск на виході з компресора та на вході в турбіну турбокомпресора, а також миттєву витрату повітря двигуном. Розрахунки виконувалися як з врахуванням так і без врахування теплової інерції. В результаті встановлено, що найбільший вплив теплова інерція здійснює на роботу системи газотурбінного наддуву, так на 8 секунді перехідного процесу тиск наддувного повітря в разі невраховування теплової інерції на 19 % нижчий за експериментальне значення, відповідні відмінності спостерігаються в значеннях частоти обертання турбокомпресора і витрати повітря двигуном. Встановлено, що врахування теплової інерції запропонованим способом забезпечує суттєве підвищення точності моделювання неусталених режимів роботи дизельних двигунів, особливо в частині коректності розрахунку параметрів системи газотурбінного наддуву.Документ Efficiency of the floating electricity power generation with dual fuel low-speed engines(2022) Tymoshevskyy Borys; Tkach MykhayloДокумент Experimental and theoretical determination of gas turbine engine blades vibration charaсteristics(2022) Tkach M. R.; Kulishov S. B.; Morhun S. O.; Polischyk V. A.; Halynkin Yu. M.; Proskurin A. Yu.Документ Features of the use of synthesis-gas in the low-displacement ship power plants(2018) Mytrofanov, O. S.; Proskurin, A. Yu.Документ Improvement of automatic speech recognition skills of linguistics students through using ukrainian-english and ukrainian-german subtitles in publicistic movies(2022) Shcherbak Olena; Shamanova Nataliya; Kaleniuk Svitlana; Proskurin Arkadii; Yeganova LarisaУдосконалення навичок автоматичного сприйняття мовлення студентів-лінгвістів через субтитрування українсько-англійських та українсько-німецьких публіцистичних кінофільмів. Посилена увага до вивчення іноземних мов в усьому світі сприяє розвитку та удосконаленню системи його вивчення в закладах вищої освіти, така система враховує та оперативно реагує на запити сучасного мультикультурного суспільства. Усе має починатись з реформування та модернізації системи вищої освіти, що передбачає запровадження інноваційних технологій у вивченні англійської та німецької мов, які також мають бути орієнтовані на сучасні запити світового ринку праці. Це й визначило актуальність досліджень. Метою статті є встановлення шляхів набуття навичок автоматичного сприйняття студентами усного мовлення через субтитрування українсько-англійських та українсько-німецьких публіцистичних кінофільмів та серіалів; перша оцінка нового мовного аудіо та відеокорпусу, що розроблений в Admiral Makarov National University of Shipbuilding, з використанням автоматичного механізму субтитрування з метою покращення сприйняття та розуміння студентами-лінгвістами усного мовлення; визначено ті вміння та навички, які покращилися в ході роботи з корпусом навчальних фільмів.Документ Improving the environmentality of ship energy installations due to the application of on-board cooling systems(2021) Kostyrin Volodymyr; Lychko Bohdan; Gogorenko Оeksiy; Костирін В. В.; Личко Б. М.; Гогоренко О. А.Системи охолодження суднових енергетичних установок з бортовими теплообмінними апаратами мають низку переваг. Застосування таких теплообмінників виключає забирання забортної води і подальше її скидання за борт після відведення тепла в звичайних рекуперативних теплообмінних апаратах. У зв'язку з цим відбувається підвищення екологічності суднових енергетичних установок через зменшення шкідливого впливу на флору і фауну водоймищ.Документ Improving the environmentality of ship energy installations due to the application of on-board cooling systems(Гельветика, 2021) Kostyrin Volodymyr; Lychko Bohdan; Gogorenko Оeksiy; Костирін В. В.; Личко Б. М.; Гогоренко О. А.Системи охолодження суднових енергетичних установок з бортовими теплообмінними апаратами мають низку переваг. Застосування таких теплообмінників виключає забирання забортної води і подальше її скидання за борт після відведення тепла в звичайних рекуперативних теплообмінних апаратах. У зв'язку з цим відбувається підвищення екологічності суднових енергетичних установок через зменшення шкідливого впливу на флору і фауну водоймищ.Документ Marine diesel engines operating cycle simulation for diagnostics issues(2021) Minchev Dmytro S.; Varbanets Roman A.; Alexandrovskaya Nadiya I.; Pisintsalyb Ludmila V.Документ Possibilities for Improving the Cooling Systems of IC Engines of Marine Power Plants(2022) Moshentsev Yuryi; Gogorenko Oleksiy; Dvirna OlhaДокумент Prediction of centrifugal compressor instabilities for internal combustion engines operating cycle simulation(2023) Minchev Dmytro S.; Gogorenko O. A.; Varbanets Roman A.; Moshentsev, Yuryi L.; Píštěk Vaclav; Kučera Pavel; Shumylo O. M.; Kyrnats Vladyslav I.Документ Rational Liquid Cooling Systems of Internal Combustion Engines(2022) Moshentsev Yuryi; Gogorenko Oleksiy; Dvirna Olha