Learning-Aided Adaptive Robust Control for Spiral Trajectory Tracking of an Underactuated AUV in Net-Cage Environments
| dc.contributor.author | Zhiming Zhu | |
| dc.contributor.author | Huang Dazhi | |
| dc.contributor.author | Yang Feifei | |
| dc.contributor.author | He Hongkun | |
| dc.contributor.author | Liang Fuyuan | |
| dc.contributor.author | Voitasyk Andrii | |
| dc.date.accessioned | 2025-10-02T06:38:04Z | |
| dc.date.issued | 2025-09 | |
| dc.description | Learning-Aided Adaptive Robust Control for Spiral Trajectory Tracking of an Underactuated AUV in Net-Cage Environments / Z. Zhu, D. Huang, F. Yang, H. He, F. Liang, A. Voitasyk // Journal article research article Published by MDPI AG in Applied Sciences. – 2025. – Vol. 15 (19). – P. 10477. | |
| dc.description.abstract1 | High-precision spiral trajectory tracking for aquaculture net-cage inspection is hindered by uncertain hydrodynamics, strong coupling, and time-varying disturbances acting on an underactuated autonomous underwater vehicle. This paper adapts and validates a model– data-driven learning-aided adaptive robust control strategy for the specific challenge of high-precision spiral trajectory tracking for aquaculture net-cage inspection. At the kinematic level, a serial iterative learning feedforward compensator is combined with a lineof-sight guidance law to form a feedforward-compensated guidance scheme that exploits task repeatability and reduces systematic tracking bias. At the dynamic level, an integrated adaptive robust controller employs projection-based, rate-limited recursive least-squares identification of hydrodynamic parameters, along with a composite feedback law that combines linear error feedback, a nonlinear robust term, and fast dynamic compensation to suppress lumped uncertainties arising from estimation error and external disturbances. A Lyapunov-based analysis establishes uniform ultimate boundedness of all closed-loop error signals. Simulations that emulate net-cage inspection show faster convergence, higher tracking accuracy, and stronger robustness than classical adaptive robust control and other baselines while maintaining bounded control effort. The results indicate a practical and effective route to improving the precision and reliability of autonomous net-cage inspection. | |
| dc.description.provenance | Submitted by Войтасик Андрій Миколайович (andrii.voitasyk@nuos.edu.ua) on 2025-09-29T14:15:28Z workflow start=Step: reviewstep - action:claimaction No. of bitstreams: 1 applsci-15-10477-with-cover_Voitasyk.pdf: 1068742 bytes, checksum: a7ea0c4de594a1156b13ab862507518b (MD5) | en |
| dc.description.provenance | Step: reviewstep - action:reviewaction Approved for entry into archive by Диндеренко Катерина (kateryna.dynderenko@nuos.edu.ua) on 2025-10-02T06:33:12Z (GMT) | en |
| dc.description.provenance | Step: editstep - action:editaction Approved for entry into archive by Диндеренко Катерина (kateryna.dynderenko@nuos.edu.ua) on 2025-10-02T06:37:47Z (GMT) | en |
| dc.description.provenance | Step: finaleditstep - action:finaleditaction Approved for entry into archive by Диндеренко Катерина (kateryna.dynderenko@nuos.edu.ua) on 2025-10-02T06:38:04Z (GMT) | en |
| dc.description.provenance | Made available in DSpace on 2025-10-02T06:38:04Z (GMT). No. of bitstreams: 1 Zhiming_ Huang_ Yang_ He_ Liang_ Voitasyk.pdf: 1068742 bytes, checksum: a7ea0c4de594a1156b13ab862507518b (MD5) Previous issue date: 2025-09 | en |
| dc.identifier.govdoc | https://doi.org/10.3390/app151910477 | |
| dc.identifier.issn | 2076-3417 (Online) | |
| dc.identifier.uri | https://eir.nuos.edu.ua/handle/123456789/11286 | |
| dc.language.iso | en | |
| dc.subject | underactuated AUVs | |
| dc.subject | net-cage inspection | |
| dc.subject | spiral trajectory tracking | |
| dc.subject | learningaided adaptive robust control | |
| dc.subject | LARC | |
| dc.subject | disturbance rejection | |
| dc.title | Learning-Aided Adaptive Robust Control for Spiral Trajectory Tracking of an Underactuated AUV in Net-Cage Environments | |
| dc.type | Article |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- Zhiming_ Huang_ Yang_ He_ Liang_ Voitasyk.pdf
- Розмір:
- 1.02 MB
- Формат:
- Adobe Portable Document Format
Ліцензійна угода
1 - 1 з 1
Вантажиться...
- Назва:
- license.txt
- Розмір:
- 4.38 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: